Entropy and approximation numbers of limiting embeddings; an approach via Hardy inequalities and quadratic forms
نویسندگان
چکیده
منابع مشابه
Limiting Embeddings for Sequence Spaces and Entropy Numbers
The paper deals with embeddings for sequence spaces with general weights. Our main results are estimates for the entropy numbers of such compact embeddings in the non-limiting and the limiting case.
متن کاملCounting Via Entropy: New Preasymptotics for the Approximation Numbers of Sobolev Embeddings
We study the optimal linear L2-approximation by operators of finite rank (i.e., approximation numbers) for the isotropic periodic Sobolev space Hs(Td) of fractional smoothness on the d-torus. For a family of weighted norms, which penalize Fourier coefficients f̂(k) by a weight ws,p(k) = (1 + ‖k‖p), 0 < p ≤ ∞, we prove that the n-th approximation number of the embedding Id : Hs(Td) → L2(T) is cha...
متن کاملDeriving Fuzzy Inequalities Using Discrete Approximation of Fuzzy Numbers
Most of the researches in the domain of fuzzy number comparisons serve the fuzzy number ordering purpose. For making a comparison between two fuzzy numbers, beyond the determination of their order, it is needed to derive the magnitude of their order. In line with this idea, the concept of inequality is no longer crisp however it becomes fuzzy in the sense of representing partial belonging or de...
متن کاملSome limiting embeddings in weighted function spaces and related entropy numbers
The paper deals with weighted function spaces of type B p,q(R , w(x)) and F s p,q(R , w(x)), where w(x) is a weight function of at most polynomial growth. Of special interest are weight functions of type w(x) = (1 + |x|2)α/2 (log(2 + |x|))μ with α ≥ 0 and μ ∈ R. Our main result deals with estimates for the entropy numbers of compact embeddings between spaces of this type; more precisely, we may...
متن کاملthe aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame
رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2012
ISSN: 0021-9045
DOI: 10.1016/j.jat.2011.09.002